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U.S. Army Midterm Report

INTRODUCTION

The TNM staging system for breast cancer has been in existence for over 35 years in
America. Within the last ten years it has become clear that: (1) the TNM staging
system is not highly accurate, and (2) if new breast cancer prognostic factors are
to be integrated with the TNM variables to increase outcome prediction accuracy, a
new prognostic system is required.

The goal of this project is the creation of a computer-based prognostic system
for breast cancer that: (1) is significantly more accurate than the TNM
staging system, (2) predicts survival over time based on therapy, (3) and
presents its predictions in a manner that physicians can understand.

BODY: FIRST YEAR ACCOMPLISHMENTS

Task 1. Data analysis and prognostic factor evaluation.

1.01) Extend analysis of binary survival endpoint to 10 year survival.

We are currently analyzing SEER 10 year survival data. Preliminary results
suggest that the predictors collected at disease discovery are less accurate
in predicting 10 year survival than 5 year survival. It may be that predictors
be collected at regular intervals after discovery and therapy, and these
predictors be used to estimate 10 year survival. Additionally, conditional
probability of survival can be calculated, i.e., if a woman survives for five
years, what 1s her probability of living another five years.

1.02) Extend the analysis to recurrence as an endpoint.

We have analyzed recurrence as an end-point, see 1.08.1 for preliminary
results

1.03) Comparison of prognostic models.

We have compared statistical method to artificial neural networks in terms of
five year breast cancer-specific survival. Selected results are shown below.

NCDB/PCE 1983 Breast Cancer Data Set.

PREDICTION MODEL ACCURACY* SPECIFICATIONS
PTNM Stages .720 @,1,IIA,IIB,IIIA,IIIB,IV
Principal Components Analysis .714 one scaling iteration
CART, pruned .753 9 nodes

CART, shrunk .762 13.7 nodes
Stepwise Logistic Regression .776 cubic splines
Fuzzy ARTMAP NN** .738 54-F2a, 128-1
Cascade Correlation NN .761 54-21-1
Conjugate Gradient Descent NN .774 54-30-1
Probabilistic NN L7177 bandwidth = 1lé6s
Backpropagation NN .784 54-5-1

* The area under the curve of the receiver operating characteristic.
** NN, neural network.




These results were recently published.

Burke HB, Rosen DB, Goodman PH. Comparing the prediction accuracy of
artificial neural networks and other statistical models for breast cancer
survival. In G. Tesauro, D.S. Touretzky, T.K. Leen, eds. Advances in Neural
Information Processing Systems 7. Cambridge, MA; MIT Press, 1995, 1063-68.

Additional publications related to statistical methods in breast cancer are
listed below.

Burke HB. Statistical analysis of complex systems in biomedicine. In D. Fisher
and H. Lenz, eds. Learning from Data: Artificial Intelligence and Statistics
V. New York: Springer-Verlag, 1995, in press

Burke HB. Artificial neural networks for cancer research: outcome prediction.
Sem Surg Onc 1994;10:73-79.

Burke HB, Goodman PH, Rosen DB. Artificial neural networks for outcome
prediction in cancer. In Proceedings of the World Congress on Neural Networks.
Hillsdale, NJ: Lawrence Erlbaum Assoc. Inc., 1994; 53-56.

Burke HB, Goodman PH, Rosen DB. Neural networks significantly improve cancer
staging accuracy. Proceedings 1994 IEEE Seventh Symposium on Computer-Based
Medical Systems 1994; 200.

Burke HB, Rosen DB, Goodman PH. Comparing the prediction accuracy of statistical
models and artificial neural networks in breast cancer. Preliminary Papers of the
Fifth International Workshop on Artificial Intelligence and Statistics 1995; 87.

Burke HB, Goodman PH, Rosen DB. Applying artificial neural networks to medical
knowledge domain. Proceedings of the International Symposium on Integrating
Knowledge and Neural Heuristics 1995, in press.

Burke HB. Artificial neural networks and biomedicine. Proceedings of the
Workshop on Environmental and Energy Applications of Neural Networks 1995, in
press.

Burke HB. The importance of artificial neural networks in biomedicine.
Proceedings of the World Congress on Neural Networks. Hillsdale, NJ: Lawrence
Erlbaum Associates Inc. 1995, 725-30.

Burke HB, Goodman PH, Rosen DB, Hellier JH, Weinstein JN, Winchester DP,
Harrell Jr FE, Marks JR, Bostwick DG, Osteen RT, Zincke H, Henson DE.
Improving breast cancer survival prediction accuracy. Submitted for
publication.

1.04.2) Create a taxonomy of prognostic factors in breast cancer.

We have created a taxonomy of prognostic factors in breast cancer. The
taxonomy was based on levels of analysis: demographic, anatomic/cellular, and
molecular genetic. In addition, we collected, described, and cited the primary
sources for the major breast cancer prognostic factors, of which there are
over 76 at the current time (with a new putative prognostic factor reported
almost every month). This work was recently published.




Burke HB, Hutter RVP, Henson DE. Breast Carcinoma. In P Hermanek, MK
Gospadoriwicz, DE Henson, RVP Hutter, LH Sobin, eds. UICC Prognostic Factors
in Cancer. Berlin: Springer-Verlag, 1995, 165-176.

1.04.3) Prognostic Factors in Breast Cancer book.

There are many problems and pitfalls in the discovery, analysis, and use of
prognostic factors. A book, that uses breast cancer as its cancer site, will
be helpful in prognostic factor research for all cancers. Although we have not
yet reached an agreement with a publisher regarding a book on prognostic
factors in breast cancer, we are actively publishing on the subject. (See also
1.03 for statistical publications.)

Burke HB. Multiple markers to enhance clinical utilities of cancer tests. In M
Hanausek, Z Walaszek, eds. Methods in Molecular Biology: Tumor Marker
Protocols. Humana Press Inc., in preparation.

Burke HB. Increasing the power of surrogate endpoint biomarkers: the
aggregation of predictive factors. J Cell Biochem, 1994;195:278-82.

Burke HB. The future of the TNM staging system. In preparation.

Burke HB, and collaborators. A proposal for the structured reporting of cancer
prognostic factor studies. In preparation.

Burke HB. Prognostic methods is cancer: a review. In preparation.
1.06.3) Determining minimum data set size.

We have found that for predicting five year breast cancer-specific survival,
using currently collected prognostic factors and a 30% five-year breast
cancer-specific mortality rate, we found that approximately 2,300 patients are
required for maximum accuracy. More than 2,300 cases does not provide any
improvement in prediction accuracy. We have not yet reported these results
because we are working with Memorial Sloan-Kettering Cancer Center on
extending it to molecular-genetic prognostic factors.

1.08.1) Recurrence analysis.

There are two types of recurrence analyses; predicting recurrence based on
data at discovery, and predicting survival based on there having been a
recurrence. We are primarily interested in predicting recurrence at discovery.
In other words, at this time, we are interested in using recurrence as an end-
point rather than as a prognostic factor for survival.

The accuracy (area under the receiver operating characteristic curve) of the
probability of recurrence predictions at three, four and five years, for those
women who are alive at each time period, is .731, .714, and .701,
respectively. We can make two observations regarding these results. (1) Based
on our analysis of five year breast cancer-specific survival, predicting
recurrence from data collected at the discovery of disease is less accurate
than predicting survival from the same data. (2) Predictive accuracy declines
as the prediction extends further into the future.

1.11) Patient information and physician credibility.

We have performed a small, preliminary survey of oncologists' assessment of
five year breast cancer specific survival. The survey is preliminary because




we want to survey more oncologists, and we want to survey oncologic surgeons,
pathologists, and radiation oncologists. Oncologists were asked to estimate

ten patient's five year breast cancer specific survival. (Survey instrument is
presented in Appendix B). The mean of the oncologist's predictions for each
patient was compared with the patient's actual survival. (see Figure below)

1

B VD

Actual

Probability of 3
survival 0.5

(@]

Patients 1 - 10

Oncologists tended to be pessimistic regarding breast cancer patient
prognosis. Since the therapy for patients with poor prognoses is different
therapy from that of patients with a good prognosis, this finding (currently
unpublished) has important implications for patient care.

As shown in 1.05 above, the TNM staging system's accuracy is .720. This is
only approximately 44% better than chance in predicting whether a woman with
breast cancer will survive five years. Our prognostic system is significantly
more accurate than the TNM staging system. This result has been submitted for
publication.

Burke HB, Goodman PH, Rosen DB, Hellier JH, Weinstein JN, Winchester DP,
Harrell Jr FE, Marks JR, Bostwick DG, Osteen RT, Zincke H, Henson DE.
Improving cancer survival prediction accuracy. Submitted for publication.
Task 2. Developing the prognostic model.

2.1) Survival curves for individual patients and for groups of patients:
2.1.1) Generate survival curves for 10 year data.

Our work on 5 year survival is directly applicable to 10 year survival.

2.1.2) Generating survival curves.




We have compared the accuracy of the major statistical methods to artificial
neural networks in predicting cancer-specific five-year survival for breast
cancer (1.03). We extend this work by creating an artificial neural network
that predicts individual patient survival over time (survival curves).

Ideally, a model that estimates the probability of survival over time should:
(1) Generate an accurate estimate of an individual patient's probability of
survival over time, i.e., an accurate survival curve. (2) Accommodate censored
cases (with a minimum of assumptions). (3) Capture the predictive power of
nonlinear and interacting prognostic factors. (4) Allow prognostic factors to
have different effects on the probability of survival over time, i.e.,
proportional hazards is not assumed.

The methods discussed below accommodate censored cases, some more successfully
than others.

The Kaplan-Meier method (Kaplan, 1958) is a descriptive method for prediction
over time based on covariate "bins". Bins can range from one, all patients, to
a bin for each covariate or level of covariate. The Kaplan-Meier can
accommodate censored cases, and, like most methods that accommodate censoring,
its accuracy can suffer as censoring increases because there are fewer cases
to base prediction upon. The Kaplan-Meier can be less accurate than
inferential models because it assumes independence, whereas most inferential
models only assume conditional independence (any dependence is explained by
the covariates). The Kaplan-Meier's problems are those of a bin model,
including; an exponential increase in the number of bins as the number of
covariates increase, it loses information by requiring that continuous
variables be cut into ranges, and there is no optimization strategy for
finding the most accurate combination of bins.

The Cox proportional hazards model (Cox, 1972) is a linear effects model. It
estimates the importance of each covariate, and it handles censored cases. It
assumes proportional hazards and it does not provide a survival curve without
the imputation of a baseline survival curve.

Faraggi and Simon (1994) nest an artificial neural network in the Cox
proportional hazards model, replacing the linear combination of covariates
with an artificial neural network. This solves the problem of capturing
nonlinear and interactional covariates, while handling censored cases. As an
artificial neural network generalization of the Cox proportional hazards
model, it retains the assumption of proportional hazards and it does not
provide a survival curve unless a baseline survival curve is imputed.

The simplest approach to a full artificial neural network implementation of a
probability of survival over time model is to create a artificial neural
network for each time interval. Data would be time interval specific; the
censored cases would be dropped from the analysis, i.e., not included in the
subsequent time interval artificial neural networks, at the time of censoring.
Survival probabilities can be generated by each time-interval-specific
artificial neural network, and they can be multiplied in succession to provide
a survival prediction for each time interval. A problem with this approach is
that the information contained in variables over several time periods is lost,
because each time period is a separate artificial neural network. One
artificial neural network spanning all time intervals partially solves this
problem. This approach, with a two layer neural network, is similar to a
series of logistic regression models, one for each time interval. (Cox vs. LR
comparison here).




Ravdin and Clark (1992), provide the earliest attempt to create a probability
of survival artificial neural network. Employing a commercial artificial
neural network, Ravdin and Clark generate a prognostic index, which is roughly
proportional to the survival probability, which they stratify into four groups
by predicted prognosis. They code time as an input variable, each patient's
data is reproduced for each time interval, in order to represent censored
outcomes. Thus, for four time intervals there are four representations of each
patient, with each representation differing only in its time interval failure
information, i.e., outcome status (alive/dead), and censored status. Ravdin
and Clark drop censored cases from the analysis at the time interval at which
censoring occurs. Since only alive or dead remain in the analysis, as time
continues, the ratio of dead to alive increases dramatically, resulting in too
many patients dead and too few patients alive in the later time intervals. In
order to rectify this imbalance, at each time interval the authors use the
Kaplan-Meier product-limit estimate to determine the overall ratio of survivor
to nonsurvivor. They use this ratio, based on the independence assumption, to
determine the number of dead to randomly remove from the study in later time
intervals. But the Kaplan-Meier estimate is itself sensitive to censoring, and
the independence assumption must be justified. When faced with this situation,
a better response might be to use the predictors to determine who to remove
from the study. Also, throwing out patients removes predictive information
from the study.

Liestold and Anderson (1994) create an artificial neural network that
estimates the probability of survival over time. Their model creates one
artificial neural network, and represents each time interval as a separate
output node. Each output node generates a conditional survival probability. A
possible problem with generating conditional survival probabilities is that
the error of each prediction (variance) may accumulate when the predictions
are multiplied together to create the survival estimate over time. Further,
there is the problem of equal training of the nodes resulting in unequal
accuracy, as some nodes are overfitted and some underfitted. Although their
model retains the proportional hazards assumption, they suggest stratifying
the covariates in order to remove this assumption. The authors go on to add a
penalty term to the model, to penalize for deviations from proportionality.

We have implemented a new artificial neural network, one that achieves the
four objectives stated above for estimating survival over time. We have also
created a Windows-based interface for online prediction of individual patient
survival. (see below)

Patient Name: \;ar{i)e;bles:
ient ID: umor :
?i;ﬁtution: T Size: 2 LN Pos: 3
Date: LN Exam: 10 Mets: n
Physician: ER: y PR: v
Cancer Type: Breast Menopausal: Yy Grade: 1
prediction Type:Survival Curve Age: 60 LN pTNM: 1
Year ANN Prediction p 1.0
r i
1.000 © 0.8
0 ° |
0.996 a 6
1 o 0
2 0.992 i 0.2
1 i
3 0.981 t 0.2
4 0.962 y ;
0.0
S 0.911 0 1 2 3 4 5




The figure at the right is an individual patient's five year breast cancer-
specific survival curve, based on the ten prognostic factors shown in the
upper right. At the left are the numerical values associated with the curve at
each year. At the bottom is a computerization of the TNM staging system. Given
the TNM variables, it automatically generates the TNM stage. In addition, it
also presents the probability of five year breast cancer-specific survival
associated with that stage. This work has been published.

Burke HB, Hoang A, Rosen DB. Survival function estimates in cancer using
artificial neural networks. Proceedings of the World Congress on Neural
Networks. Hillsdale, NJ: Lawrence Erlbaum Assoc. Inc. 1995, 742-7.

Burke HB, Goodman PH, Rosen DB. A computerized prediction system for cancer
patient survival that uses an artificial neural network. Proceedings of the
First World Congress on Computational Medicine and Public Health 1995, in
press.

2.1.3) Determining the accuracy of the survival curves.

The accuracy of predicted survival curves, with respect to the actual times of
death (or of censoring) of the patients in a data set, can be evaluated in
terms of accuracies of the survival or hazard probabilities at each point in
time. The accuracy of these component probability predictions should be
assessed using a (strictly) proper scoring rule, such as the gquadratic (e.g.
Brier) or logarithmic score, whose expectation is maximized by (and only by)
predicting the true probability (Winkler, 1969; Savage, 1971). Our recent
work has shown that such scoring rules are in fact averages of actual
decision-making loss or regret (Rosen, 1995, 1996). These averages are over
the potential decision problems in which the probability predictions might be
used, each such decision problem being characterized by the regret associated
with a false positive vs. that associated with a false negative. This theory
also suggests an ROC curve alternative whose area is a proper scoring rule.

We also seek a measure of the extent to which the predictions are in the
correct relative order, regardless of their numerical values. Such indices
(Somers' Dyx , ¢ index,...) are often called measures of ordinal
discrimination, or of concordance (the number of pairs of predictions in the
correct order), and in the dichotomous-outcome case, can arise from the
empirical ROC curve. When a proper scoring rule is used to evaluate the
overall correspondence of the predictions with the outcome, we wish to know
how much of this inaccuracy could be due to miscalibration, and how much is
unequivocally due to mis-ordering. This question is difficult to answer
using concordance or ROC-based indices without strong parametric assumptions.
We have introduced (Rosen 1994; Rosen, Burke, & Goodman, 1995a) a procedure
identifying an uneguivocal misdiscrimination component in any proper score,
including logarithmic (binomial log-likelihood or Kullback-Liebler).

The procedure calibrates the predictions on a given data set so that all
proper scores are simultaneously optimized on that data subject to the
constraint that the ordering of the predictions not change (though ties can be
produced) . This constraint is very strong; without it such a calibration
could often achieve a perfect score. The resulting score of interest (log-
likelihood, Brier, etc.) on these self-calibrated predictions tells how much
of the original score cannot possibly be improved by any order-preserving re-
calibration, and is thus an index of ordinal discrimination. The method can
also be applied to predictions of a continuous dependent variable's mean.




This work has recently been published.

Rosen DB. Ordinal discrimination index for any proper scoring rule.
published Abstract. Medical Decision Making 1994;14:440.

Rosen DB. How good were those probability predictions? The expected
recommendation loss (ERL) scoring rule (8 pp.). To appear in Maximum
Entropy and Bayesian Methods: Proceedings of the Thirteenth
International Workshop (August 1993), G. Heidbreder, ed., Kluwer,
Dordrecht, The Netherlands, 1995a.

Rosen DB, Burke HB, Goodman PH. Improving prediction accuracy using a
calibration postprocessor. Submitted for publication, 1995b.

Rosen DB. Issues in selecting empirical performance measures for
probabilistic classifiers. In Maximum Entropy and

Bayesian Methods: Proceedings of the Fifteenth International Workshop
(July/August 1995), K. Hanson and R. Silver, eds., Kluwer,
Dordrecht, The Netherlands, 1996, in press.

2.1.4) Comparison of artificial neural networks with Cox proportional hazards
model.

We are currently performing these comparisons, using several different
measures of accuracy. (see 2.1.3)

2.2) Missing data.

Most data analyses either drop cases with missing data or impute some measure
of central tendency for the missing data. Dropping cases has at least two
negative effects: the remaining data may be biased, and it reduces the amount
of data available for analysis. It may be possible to impute a central
tendency value for missing data. But there are a number of statistical
problems with the imputation of a central tendency, especially when there are
many cases with missing data or when the important predictor variables contain
much of the missing data..

The current cancer prediction system, the TNM staging system, does not provide
a stage if one of the TNM variable is missing, nor does it provide guidance
regarding prediction with missing variables (Beahrs, 1992).

In cancer prognostic factor research, many large data sets, both retrospective
and prospective, suffer from missing data, i.e., missing prognostic factor
information (Burke, 1993, 1995b, 1995c). We estimate that 75 - 80% of cases
in some national data sets contain missing data. The usual approach to missing
data is to remove the entire case, but this reduction in data set size,
combined with the further reduction caused by splitting the data set into
training and testing subsets, can significantly reduce the accuracy of
statistical models. As Little and Rubin [1987) note:

"Statistical packages typically exclude units that have missing value codes
for any of the variables involved in an analysis. This strategy is generally
inappropriate, since the investigator is usually interested in making
inferences about the entire target population, rather than the portion of the
target population that would provide responses to all relevant variables in
the analysis.”




Moreover, when one is predicting an individual patient's outcome in a clinical
situation, there is no guarantee that values for every predictive factor will
be known for that individual; clearly “removing the case™ is not an option in
clinical situations. The result of a missing prognostic factor in clinical
practice is usually an ad hoc guess of prognosis. For example, in the TNM
staging system, if one of the covariates is not available no stage can be
assigned, so the clinician must guess the patient's prognosis.

The missing data problem is especially severe in small data sets, where all
data is precious. Here the problem can be enough to preclude the analysis of
the data set. For example, in the Duke University breast cancer data set,
which contains several of the new molecular-genetic prognostic factors, of the
230 cases in the data set, only 98 cases have no missing data. Given the
number of covariates and the event rate (death from breast cancer), 98 cases
are not sufficient for an analysis of these data. Because the new molecular-
genetic prognostic factors are not always collected, and because molecular-
genetic prognostic factors can be very powerful predictors of survival, it is
essential that the problem of missing data be solved so that outcome
prediction in cancer can advance.

When constructing a statistical model to predict a cancer outcome, e.g.
survival, missing data (incomplete feature vectors) can cause a decrease in
predictive accuracy (compared to the data set which does not contain missing
data) because: (1) the missing data itself reduces the amount of data
available to serve as a basis for prediction, and (2) the usual practice of
removing cases with missing data, which reduces sample size, and therefore
accuracy, reduces the amount of usable data to a level below that required to
maintain predictive accuracy. One can never predict the true values of the
missing data, but unless there are a great many missing values for a
particular covariate, substituting values generated by an efficient method
should improve prediction accuracy, compared to removing the cases with
missing data. In other words, the problem we address is what method best
deals with missing data, allowing us to retain the rest of the patient's data.
Best means the method that produces the least biased estimates of the missing
data values. Commonly used methods for estimating the missing values, e.g.,
imputing the mean covariate value or zero for the missing data, create strong
biases and should be avoided (Little, 1992;Little and Rubin, 1987).

To be more precise, there are two missing data problems. One involves
covariate values missing in the data sets used to train and test statistical
prediction methods, such as logistic regression or Cox proportional hazards.
The other involves missing predictors in a clinical situation; the patient's
chart does not contain all the expected prognostic factors. For missing
values, we prefer a method that uses all the information in the data set to
estimate the missing values. This approach contrasts with, and is more
accurate than, the simple insertion of a descriptive value (usually some
measure of central tendency) of the covariate (e.g., a mean or median value)
(Vamplew and Adams, 1992).

We are developing an artificial neural network approach for solving the
missing data problem, using Normalized Radial Basis Functions. Normalized
Radial Basis Functions based on estimating the joint input-output data
distribution using a network representing mixtures of many multivariate
gaussians.

Normalized Radial Basis Function (NRBF) networks (Moody and Darken, 1988,1989;
Poggic, 1989; Nowlan, 1990) model the output as a weighted average of an
output value associated with each hidden unit. A given hidden unit also has
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an associated position in the input space, and a "width" in each input
dimension specifying how fast the weighting (importance in the weighted
average) falls off in that dimension. Thus each hidden unit, or term in the
model, is radial (or ellipsoidal) in that its influence decreases in all
directions from its center. This is in contrast to conventional sigmoidal-
projective neural networks, which do not use a weighted average, and in which
each hidden unit has no “"center™ point, but rather selects(through its input
weight vector) an arbitrary direction (linear projection) in the input space,
where its contribution to the final prediction is a sigmoidal function along
this direction. Training of the NRBF is accomplished using any of the standard
neural network algorithms based on backpropagation of errors for calculation
of the gradient of the log-likelihood with respect to the parameters (weights)
of the network.

An advantage of a trained NRBF (when using gaussians as the radial weighting
functions) is its ability to easily handle missing inputs during performance
(i.e. prediction or recall), since merely ignoring those input components
that are missing in a given input vector is equivalent to the correct Bayesian
marginalization over the missing components.

The nonparametric form of the NRBF is known as a kernel estimator or
Probabilistic Neural Network (Rosenblatt, 1956; Parzen, 1962; Nadaraya,1964;
Watson, 1964; Specht, 1990, 1991). Here, instead of using an optimization
criterion to set the parameters of the network, there is a single hidden unit
corresponding to each training case, whose location in the input space, as
well as output value, is taken directly as those input and output values
defining the case. These methods are sometimes called memory-based or case-
based, since they store all the training data but require little or no
computation during training. Thus these methods are attractive where training
time is expensive but storage space during performance is not limiting, and
they retain the ability to handle missing data during performance.

The NRBF can be generalized to form a Gaussian Mixture Network (Tresp, et al.,
1994, Gharamani and Jordan, 1994) for the joint (input-output, i.e. predictor-
response) probability density. This can use basis functions with non-diagonal
variance-covariance matrices, thus incorporating some of the projective
aspects of conventional sigmoidal neural networks. More importantly, they can
be trained using the maximum-joint-likelihood(probability of observed training
data inputs and outputs given parameters)criterion, enabling training on cases
with arbitrary missing data (even if every case has some missing) using the
iterative Expectation and Maximization (EM) algorithm (McKendrick, 1926;
Hartly 1958; Orchard and Woodbury, 1972; Dempster, Laird, and Rubin, 1977).

It has been suggested by Efron and others that, ignoring the question of
missing data, maximum-joint-likelihood estimation is less efficient than
conventional maximum-likelihood estimation (probability of observed training
data outputs given training data inputs and the parameters) .Therefore, as our
first missing-data method, we will examine the use of mixture networks to
perform multiple imputation of missing values, as a preprocessor to be
followed by a separate conventional feedforward neural network for prediction
using these imputed values. A nonparametric(memory-based) form of this method
has been proposed (Tresp, et al., 1995]) but has the disadvantage of requiring
that a good fraction of the training cases are complete, i.e. have no missing
inputs.

The figure below demonstrates that, compared to the most common approach of
removing cases with missing data, where accuracy decreases as missing data
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increases, the accuracy of our approach is stable across a wide range of
missing data.

100 training observations from known distribution
(mean results of 10 trials)

[ T T T T
case deletion yse
EM 154

avg. sq. err. in parameter

i

Q ] ] 1 ! ! 1
0 0.03 0.1 0.15 0.2 0.25 0.3 0.3%

fraction of data missing

Preliminary results were presented at the National Cancer Institute.

Burke HB, Rosen DB. Missing data solutions using artificial neural networks.
Division of Cancer Prevention and Control Seminar Series, National Cancer
Institute, Bethesda MD, June 21, 1995.

2.3) Censored cases

Discussed in detail in 2.1.2.

Task 3. Implementation of a clinically useful prognostic system

3.1) Computer code for artificial neural networks.

All our work is written in either C, C++, or XLISP-STAT.

3.2) Physician interface.

It is very important that physicians find the new prognostic system easy to

use and useful. To this end we have implemented the prognostic system on a DOS
platform with a Windows interface. We are presenting the system to clinicians
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3.2) Physician interface.

It is very important that physicians find the new prognostic system easy to
use and useful. To this end we have implemented the prognostic system on a DOS
platform with a Windows interface. We are presenting the system to clinicians
and receiving feedback regarding what is important to them in terms of
information and the graphical display of the information. (see 2.1.2)

Tasks added to the project

We have added three tasks to the project. (1) A comparison of the NCDB and the
SEER data sets, (2) an examination of methods for dealing with censoring bias
(cases not missing at random) and competing risks, and (3) the computerization
of the TNM staging system for breast cancer.

(1) Comparison of the NCDB and the SEER data sets.

To the best of our knowledge no one has performed a comprehensive comparison
of the National Cancer Data Base (NCDB) and its associated Patient Care
Evaluation (PCE), and the Surveillance, Epidemiology, and End Results (SEER)
data sets. It is commonly felt that the SEER, which is population based rather
than hospital based, is more accurate than the NCDB. But the NCDB is five-
times larger than the SEER and the SEER over represents certain minorities. We
are examining these data sets in terms of missing data, censoring, and the
prognostic and outcome variables. This work is very time consuming, but it is
necessary to determine which is the better data set for the prognostic system.
Shown below are (1) a comparison of missing data, (2) a comparison of
censoring, and (3) a Kaplan-Meier comparison of the NCDB and the SEER, for
five year breast cancer-specific survival.

1. So far, for breast cancer, we have not found any significant demographic variable differences
between the SEER and NCDB.

2. For breast cancer, the NCDB does have significantly more missing data than the SEER.
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This work is being prepared for publication.

Hoang A, Burke HB, Rosen DB. Comparison of the two national cancer data sets:
SEER and NCDB. In preparation.

(2) Censoring bias and competing risks.

It is well known that censoring (lost-to-follow-up) can be biased in cancer,
that cases are not missing at random. This is important because most
statistical methods in use to day assume that censored cases are missing at
random. We are developing analytic and empirical methods for (i) determining
if there is a bias, and (ii) adjusting for the bias.

Hoang A, Burke HB, Rosen DB. Survival analysis with some cases nonrandomly
lost-to-follow-up. In preparation.

It is also important to recognize that other causes of death affect the
probability of death from breast cancer. The prognostic system must model
other causes of death, in addition to modeling breast cancer mortality and
censoring.

(3) Computerization of the TNM staging system

Although there have been plans for computerizing the TNM staging system for
breast cancer, our implementation (see 2.1.2) is the first PC-based program
for: (i) determining the breast cancer TNM stage from the breast cancer TNM
variables, and (ii) predicting five year breast cancer specific survival based
on TNM stage.

CONCLUSION

We have made substantial progress during the last year. We believe that we
will be able to successfully meet our goal of providing a computer-based
prognostic system that is more accurate than the TNM staging system and that
is easy to use and understand, within the four year time frame of this grant.
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APPENDIX B - PHYSICIAN SURVEY

SURVEY OF PHYSICIAN ESTIMATES OF FIVE YEAR BREAST CANCER-SPECIFIC SURVIVAL

We are interested in your estimate of the breast cancer-specific survival of women diagnosed
in the United States in 1985 .

You are a (check one): oncologist, oncologic surgeon, pathologist,
radiation oncologist .
You graduated from medical school: years ago.

Assume that each of the patients listed below is in your office, and asks you what her chances are,
from date of diagnosis, of living five years. What is your estimate (% alive) of each patient living five
years (not including those patients who died from causes other than breast cancer), over all
primary and adjuvant therapies? Base your estimates on 1985 patients. (Note: for purposes of TNM
staging, all patients with positive lymph nodes have been classed as T1).

PATIENT DESCRIPTION % PATIENTS
SURVIVING 5 YRS

Patient 1. Fifty-five year old, postmenopausal, 2 cm tumor, 0 positive lymph
nodes, no distant metastasis, ER and PR positive, Grade 1.

Patient 2. Thirty-five year old, premenopausa!, 1 cm tumor, 3 positive lymph
nodes, no distant metastasis, ER and PR negative, Grade 1.

Patient 3. Fifty-five year old, postmenopausal, 5 cm tumor, 3 positive lymph
nodes, no distant metastasis, ER and PR negative, Grade 1.

Patient 4. Fifty-five year old, postmenopausal, 6 cm tumor, 0 positive lymph
nodes, no distant metastasis, ER and PR negative, Grade 1.

Patient 5. Forty-five year old, premenopausal, 6 cm tumor, 3 positive lymph
nodes, no distant metastasis, ER and PR positive, Grade 1.

Patient 6. Sixty-five year old, postmenopausal, 6 cm tumor, 3 positive lymph
nodes, no distant metastasis, ER and PR negative, Grade 1.

Patient 7. Forty-five year old, premenopausal, 1 cm tumor, 3 positive lymph
nodes, positive distant metastasis, ER and PR positive, Grade 3.

Patient 8. Forty-five year old, premenopausal, 3 cm tumor, 1 positive lymph
node, positive distant metastasis, ER and PR positive, Grade 3.

Patient 9. Sixty-five year old, postmenopausal, 3 cm tumor, 1 positive lymph
node, positive distant metastasis, ER and PR positive, Grade 3.

Patient 10. Forty-five year old, premenopausal, 6 cm tumor, 7 positive lymph
nodes, positive distant metastasis, ER and PR positive, Grade 3.




